TAXONOMY OF INFRASPECIFC TAXA OF ABIES CONCOLOR: LEAF ESSENTIAL OILS OF VAR. CONCOLOR AND VAR. LOWIANA - ERRATA

Robert P. Adams
Biology Department, Baylor University, Box 97388, Waco, TX
76798, USA, Robert_Adams@baylor.edu

R. M. Lanner

2651 Bedford Ave., Placerville, CA 95667

Michael Kauffmann

Biology Department, Humboldt State University
4312 Lentell Road, Eureka, CA 95503
and
David Thornburg
2200 W. Winchester Lane, Cottonwood AZ 86326

Abstract

Previously (Adams et al, 2011), the volatile leaf oils of Abies concolor were reported. Unfortunately, due to a sample-numbering error, the composition of the New Mexico population was incorrect. This paper reprints the original paper with the corrected data. The leaf essential oils of Abies concolor var. concolor and var. lowiana had large amounts of β-pinene ($34-52 \%$). The oils from central and northern California were very similar and were devoid of (E)- β ocimene and 6 -methyl-5-octen-one. Considerable differentiation was found among populations of var. concolor, confirming the work of Zavarin et al. $(1970,1975)$ of the existence of the Cuyamaca Race, and three sub-types of A. c. var. concolor oils: group A (Utah), B1 (New Mexico) and B2 (Arizona). Phytologia 93(2): 208-220 (August 1, 2011).

KEY WORDS: Abies concolor var. concolor, A. c. var. lowiana, leaf essential oils composition, geographic variation.

Abies concolor (Gord. \& Glend.) Hilde. is a forest tree of western North America (Fig. 1) ranging from Oregon to northern Mexico (Zavarin et al. 1975). Eckenwalder (2009) recognized two varieties: var. concolor and var. lowiana (Gord.) Lemm. and noted that these have been treated as species by some authors. He also indicated that var. lowiana hybridizes with A. grandis (D. Dougl. ex D. Don in Lamb.) Lindl. but not with A. lasiocarpa (Hook.) Nutt. Recently, Xiang et al. (2009) examined nrDNA sequence data and found A. concolor most closely related to A. grandis, so hybridization seems possible. Zavarin et al. $(1970,1975)$ analyzed wood monoterpenes of A. concolor from 43 populations and found evidence that var. lowiana from n . and c. California formed a group (Fig. 1), but called var. lowiana from s. California, the Cuyamaca race. In addition, Zavarin et al. (1975) subdivided var. concolor into three groups (A, B1 and B2, Fig. 1).

There appears to be only one paper reporting on the leaf essential oil of A. concolor (Wagner et al. 1989) from a population in the North Kaibab Ranger District, AZ, and those data were reported on a ppm basis instead of the normal percent total oil data.

Previously (Adams et al, 2011) the volatile leaf oils of Abies concolor were reported to be highly differentiated in a Cimarron, NM population. Unfortunately, due to a sample numbering error, the results for the New Mexico population were incorrect. This paper reprints the original paper with corrected data.

MATERIALS AND METHODS

Plant specimens: Abies concolor var. concolor: Adams 12405-12407, Mill B trailhead, Big Cottonwood Canyon, Salt Lake City, UT, 40° $37.996^{\prime} \mathrm{N}, 111^{\circ} 43.418^{\prime} \mathrm{W}, 6242 \mathrm{ft}$. , Adams 12481-12485, (by D. Thornburg) 7 mi. nw of Pine, AZ along Rim Rd., $34^{\circ} 26.844^{\prime} \mathrm{N}, 111^{\circ}$ $21.520^{\prime} \mathrm{W}, 7597 \mathrm{ft}$., Adams 12679-12683, 13 mi . w of Cimarron, NM on US $64,36^{\circ} 31.509^{\prime} \mathrm{N}, 105^{\circ} 10.932^{\prime} \mathrm{W}, 7872 \mathrm{ft}$.

Abies concolor var. lowiana: Adams 12427-12431 (by R. Lanner) 2 mi . n of jct. US50 on White Meadows Rd., ca. 22 mi e of Placerville, CA, $38^{\circ} 47^{\prime} 00^{\prime \prime} \mathrm{N}, 120^{\circ} 29^{\prime} 20^{\prime \prime} \mathrm{W}, 3450 \mathrm{ft}$., Adams 12432-12436 (by R. Lanner) Mormon Emigrant Trail at jct. with Park Creek Rd., ca. 24 mi ese of Placerville, CA, $38^{\circ} 43^{\prime} 30^{\prime \prime} \mathrm{N}, 120^{\circ} 28^{\prime} 20^{\prime \prime} \mathrm{W}, 4000 \mathrm{ft}$., Adams 12438-12442 (by M. Kauffmann) Klamath Mtns., CA, $40^{\circ} 50^{\prime} 21.4$ " N, $123^{\circ} 43^{\prime} 11.09^{\prime \prime}$ W, 4820 ft ., Adams 12464-12468 (by B. Miller) Lee Summit, CA on Hwy 70/89, $39^{\circ} 52.674^{\prime} \mathrm{N}, 120^{\circ} 45.736^{\prime} \mathrm{W}, 4414 \mathrm{ft}$., Abies concolor var. concolor / lowiana: Adams 12522-12526, on CA Hwy 38 north side of Onyx Summit, CA, $34^{\circ} 12.037^{\prime} \mathrm{N}, 116^{\circ} 43.520^{\prime}$ $\mathrm{W}, 8490 \mathrm{ft}$. All specimens are deposited in the BAYLU herbarium.

Figure 1. Distribution of Abies concolor (modified from Zavarin et al. 1975) with subgroups based on wood monoterpene data.

Isolation of Oils - Fresh leaves (200 g) were steam distilled for 2 h using a circulatory Clevenger-type apparatus (Adams, 1991). The oil samples were concentrated (ether trap removed) with nitrogen and the samples stored at $-20^{\circ} \mathrm{C}$ until analyzed. The extracted leaves were oven dried $\left(100^{\circ} \mathrm{C}, 48 \mathrm{~h}\right)$ for determination of oil yields.

Chemical Analyses - Oils from 10-15 trees of each of the taxa were analyzed and average values reported. The oils were analyzed on a HP5971 MSD mass spectrometer, scan time 1 sec ., directly coupled to a HP 5890 gas chromatograph, using a J \& W DB-5, $0.26 \mathrm{~mm} \times 30$ $\mathrm{m}, 0.25$ micron coating thickness, fused silica capillary column (see 5 for operating details). Identifications were made by library searches of our volatile oil library (Adams, 2007), using the HP Chemstation library search routines, coupled with retention time data of authentic reference compounds. Quantitation was by FID on an HP 5890 gas chromatograph using a J \& W DB-5, $0.26 \mathrm{~mm} \times 30 \mathrm{~m}, 0.25$ micron coating thickness, fused silica capillary column using the HP Chemstation software.

Data Analysis - Terpenoids (as percent total oil) were coded and compared among the species by the Gower (1971) metric. Principal coordinate analysis was performed by factoring the associational matrix using the formulation of Gower (1966) and Veldman (1967). Associational measures were computed using absolute compound value differences (Manhattan metric), divided by the maximum observed value for that compound over all taxa (= Gower metric, Gower, 1971; Adams, 1975). Principal coordinate analysis was performed by factoring the associational matrix based on the formulation of Gower (1966) and Veldman (1967).

RESULTS AND DISCUSSION

In general, the leaf oils of A. concolor are dominated by monoterpenes with only small amounts of sesquiterpenes and diterpenes (Table 1). Each of the populations are high in β-pinene (Table 1). The populations from central and northern California (Lee S, Plac, Klam, Table 1) share several components at similar levels: linalool, α-terpineol, geranyl acetate, RI 1617 sesquiterpene alcohol, and eudesm-7(11)-en-4-ol and all are devoid of (E)- β-ocimene and 6-methyl-5-octen-one (Table 1).

The overall similarities of the oils are shown in figure 2. Notice A. c. var. lowiana from central and northwestern California have very similar oils $(0.809,0.888$, Fig. 2). The major difference in the Klamath Mtns. oil is the presence of intermedeol that was only found in this oil and the New Mexico oil. The oils from Utah and Onyx Summit are the next most similar (0.734, Fig. 2), with the oils from Arizona and New Mexico being the least similar group (0.702, Fig. 2).

Figure 2. PCO based on 25 terpenes. The dotted lines are the minimum spanning network and the numbers next to the lines are the similarities.

Mapping the minimum spanning network onto the distribution of Abies concolor (Fig. 3) clearly shows the geographic affinities. The unity of the central and northwestern California A. c. var. lowiana populations is clear. Zavarin et al. (1975) designated the southern California populations as the Cuyamaca race and this analysis confirms their observation. Zavarin et al. (1975) found an affinity (in the wood monoterpenes) of the Cuyamaca Race to var. concolor, group A, and
there is a moderate similarity in their oils (Figs. 2, 3), but they are rather distinct.

Zavarin et al. (1975) divided var. concolor into 3 sub-groups: A, B1 and B2. The present analysis (based on leaf essential oils) confirms the same pattern of differentiation (Figs. 2, 3).

Figure 3. Minimum spanning network based on 20 terpenes. The open circles are A. c. var. lowiana, the open squares are generally treated as A. c. var. concolor. The numbers next to the lines are similarities.

A different perspective is obtained by geographically clustering the populations (Fig. 4). The differentiation of var. lowiana in northwest California is the dominant feature (Fig. 4). In addition, the differentiation of the other subgroups is clearly seen (Cuyamaca race Utah, A) and (Arizona, B2 - New Mexico, B1).

Figure 4. Geographically clustering of populations of Abies concolor based on 25 terpenoids. The numbers next to the contour lines are the similarities.

CONCLUSIONS

In general, the leaf volatile oils gave a very good agreement with the pattern of differentiation Zavarin et al. (1975) found using wood monoterpenes. The volatile leaf oils support the recognition of var. concolor and var. lowiana. The differentiation of the Cuyamaca race, and three sub-types of A.c. var. concolor oils: group A (Utah), B1 (New Mexico) and B2 (Arizona) suggests that these populations might be incipient varieties.

ACKNOWLEDGEMENTS

This research was supported in part with funds from Baylor University. Thanks to Tonya Yanke for lab assistance.

LITERATURE CITED

Adams, R. P. 1975. Statistical character weighting and similarity stability. Brittonia 27: 305-316.
Adams, R. P. 1991. Cedarwood oil - Analysis and properties. pp. 159173. in: Modern Methods of Plant Analysis, New Series: Oil and Waxes. H.-F. Linskens and J. F. Jackson, eds. Springler- Verlag, Berlin.
Adams, R. P. 2007. Identification of essential oil components by gas chromatography/ mass spectrometry. 2nd ed. Allured Publ., Carol Stream, IL.
Adams, R. P., R. M. Lanner, M. Kauffmann and D. Thornburg. Taxonomy of infraspecific taxa of Abies concolor: leaf essential oils of var. concolor and var. lowiana. Phytologia 93: 107-118.
Eckenwalder, J. E. 2009. Conifers of the world. pp. 91-92. Timber Press, Portland, OR.
Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 326-338.
Gower, J. C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857-874.
Veldman, D. J. 1967. Fortran programming for the behavioral sciences. Holt, Rinehart and Winston Publ., NY.
Wagner, M. R., K. M. Clancy and R. W. Tinus. 1989. Maturational variation in needle essential oils from Pseudotsuga menziesii,

Abies concolor and Picea engelmannii. Phytochemistry 28: 765770.

Xiang, Q-P., Q-Y. Xiang, Y-Y. Guo and X-C. Zhang. 2009. Phylogeny of Abies (Pinaceae) inferred from nrITS sequence data. Taxon 58: 141-152.
Zavarin, E., K. Snajberk, T. Reichert and E. Tsien. 1970. On the geographic variability of the monoterpenes from the cortical blister oleoresin of Abies lasiocarpa. Phytochemistry 9: 377-395.
Zavarin, E., K. Snajberk and J. Fisher. 1975. Geographic variability of monoterpenes from cortex of Abies concolor. Biochem. Syst. Ecol. 3: 191-203.
Table 1. Comparison of leaf oil compositions of Abies concolor populations. Klam = Klamath Mtns., NW CA, Lee $\mathrm{S}=$ Lee Summit, CA, Plac $=$ Placerville, $\mathrm{CA}, \mathrm{AZ}=$ Pine, $\mathrm{AZ}, \mathrm{NM}=$ Cimarron, New Mexico, UT $=$ Wasatch Mtns., UT, Onyx $=$ Onyx Summit, CA. Compounds in bold face appear to separate the taxa. Compositional values less than 0.1% are denoted as traces (t). Unidentified components less than 0.5% are not reported. RI is the Kovat's Index using a linear approximation on DB-5 column. *= cpds used for PCO (30 cpds.)

> compound
 tricyclene ${ }^{*}$ α-pinene* camphene* sabinene β-pinene* myrcene* α-phellandrene δ-3-carene* α-terpinene p-cymene limonene* β-phellandrene (Z)- β-ocimene

RI	compound	Plac	Klam	Lee S	AZ	NM	UT	Onyx
1038	2-heptyl acetate	-	-	-			t	
1044	(E)- β-ocimene*	-	-	-	0.3	0.2	0.3	0.1
1054	γ-terpinene	0.2	0.1	0.2	0.2	0.2	0.2	0.2
1077	(6-methyl-5-octen-2-one)	-	-	-	0.1	0.1	0.1	0.1
1086	terpinolene*	1.7	1.0	1.4	0.7	0.6	1.7	1.4
1087	2-nonanone*	0.4	0.1	0.3	0.5	0.2	0.6	0.4
1095	linalool*	0.2	0.1	0.4	1.4	1.9	1.8	1.4
1118	endo-fenchol*	0.4	0.3	0.4	0.2	t	1.8	1.6
1118	cis-p-menth-2-en-1-ol	0.4	0.3	0.4	0.1	t	0.2	0.4
1122	α-campholenal	0.1	t	0.1	0.1	t	0.2	0.2
1136	trans-p-menth-2-en-1-ol	0.3	0.1	0.3	t	t	0.1	0.3
1141	camphor	t	t	0.1	t	0.2	0.1	t
1145	camphene hydrate*	0.2	0.1	0.3	1.8	3.4	4.1	0.5
1148	citronellal*	0.1	0.3	0.1	0.6	0.5	0.3	0.2
1155	iso-borneol	t	t	t	t	t	0.1	t
1165	borneol*	0.3	0.2	0.5	0.2	0.2	0.6	0.8
1172	cis-pinocamphone	t	t	t	t	t	-	
1174	terpinen-4-01*	0.4	0.3	0.4	0.3	0.4	0.6	0.7
1183	cryptone	t	t	t	t	-		t
1186	\boldsymbol{u}-terpineol*	6.9	4.8	6.5	2.2	1.2	3.5	4.5
1195	cis-piperitol	0.2	0.1	0.2	t	t	t	0.1
1201	n-decanal	0.3	-	0.1	0.2	t	0.1	0.2
1207	trans-piperitol	0.1	t	0.2	t	-	t	0.1

RI	compound	Plac	Klam	Lee S	AZ	NM	UT
1218	endo-fenchyl acetate	t	t	-	0.1	t	t
1223	citronellol*	0.2	0.3	0.5	0.4	0.2	0.6
1235	neral	0.1	-	0.3	-	-	t
$\mathbf{1 2 4 9}$	piperitone*	$\mathbf{0 . 1}$	\mathbf{t}	$\mathbf{0 . 4}$	\mathbf{t}	-	$\mathbf{1 . 1}$
1264	geranial	0.4	-	0.6	t	t	0.2
$\mathbf{1 2 8 7}$	bornyl acetate*	$\mathbf{1 . 2}$	$\mathbf{6 . 6}$	$\mathbf{2 . 8}$	$\mathbf{8 . 8}$	$\mathbf{2 0 . 2}$	$\mathbf{6 . 4}$
$\mathbf{1 2 8 9}$	thymol*	\mathbf{t}	-	\mathbf{t}	\mathbf{t}	-	$\mathbf{1 . 3}$
1293	2-undecanone	0.3	0.2	0.1	0.4	0.3	0.1
1300	tridecane*	0.1	t	0.2	0.3	0.8	0.2
1350	citronellyl acetate*	0.2	0.2	0.2	0.5	0.2	t
1379	geranyl acetate*	0.8	0.4	0.5	0.2	0.6	t
1395	sesquiterpene,43, $55,86,206$	0.1	-	0.1	0.3	t	t
1408	dodecanal	t	-	t	t	t	t
1417	(E)-caryophyllene	t	t	t	t	-	0.2
1478	γ-muurolene	t	0.2	0.1	-	-	-
1496	valencene	0.2	0.3	0.2	t	-	-
1500	α-muurolene	-	-	-	-	t	-
1514	γ-cadinene	-	-	-	-	0.3	-
1514	cubebol	-	0.2	-	0.1	0.3	-
1522	δ-cadinene	-	t	-	0.1	0.5	-
1559	germacrene B	t	-	0.1	t	-	-
1561	(E)-nerolidol	t	-	0.1	t	t	0.1

RI compound	Plac	Klam	Lee S	AZ	NM	UT	Onyx
sesquiterpene, 81,161, $189,222^{*}$	0.3	0.4	0.5	t	t	t	-
1627 1-epi-cubenol	t	-	0.1	t	0.4	-	0.3
1649β-eudesmol	0.1	-	0.2	-	-	t	-
1652α-eudesmol	0.1	-	0.2	-	-	t	-
1652 a-cadinol	0.1	-	0.2	-	t	t	-
1665 intermedeol*	-	6.4	-	-	2.5	-	-
1700 eudesm-7(11)-en-4-ol	0.1	0.1	0.1	-	-	t	-
1987 manoyl oxide	-	t	t	0.1	0.2	t	t
2014 palustradiene(=abieta-8,							
13-diene) *	t	t	0.1	t	-	t	0.3
2056 manool	0.1	t	0.1	t	-	t	t
2149 abienol	0.1	t	0.1	t	-	t	0.2

